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Abstract
Granular materials present memory effects when subjected to tapping processes.
These effects have been observed experimentally and are discussed here in
the context of a general kind of model system for compaction formulated at
a mesoscopic level. The theoretical predictions agree qualitatively with the
experimental results. As an example, a particularly simple model is used for
detailed calculations.

1. Introduction

A granular material is a system composed of a ‘large’ number of macroscopic particles or
grains whose interactions are inelastic, such that mechanical energy is not conserved. Here, in
practice, ‘large’ means in many cases a few thousands or even hundreds of particles, as opposite
to usual molecular systems having a number of particles of the order of Avogadro’s number.
The macroscopic size of the particles implies that the usual concepts of thermodynamics cannot
be directly translated to these systems. For instance, if we consider a typical granular system
such as sand, the energy needed to lift a grain by one diameter is more than ten orders of
magnitude larger than the thermal energy of the grain at room temperature. Moreover, due
to the inelasticity of collisions it is necessary to supply external (nonthermal) energy to the
system in order to generate a steady state or to study the relaxation of the system towards a
stable configuration. Therefore, although the concept of granular temperature is often used in
the literature, it must be understood just as a measure of the velocity fluctuations in the system,
without being related to any underlying idea of thermal equilibrium.

The phenomenology of granular media is very rich, showing many characteristic complex
features [1]. Here we will focus on one of these, namely compaction, which can be roughly
defined as the nonthermal relaxation of a loosely packed system of many grains under vertical
mechanical tapping or vibration. This problem is of fundamental importance to many industrial
applications and also raises fundamental theoretical questions. Therefore, it is not surprising
that in the last few years systematic experimental investigations and theoretical approaches
have been developed to describe the dynamics of compaction processes, as well as the nature
of the final state reached by the system.
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Figure 1. A sketch of the experimental set-up used in [2]. The density is
measured at four different heights by means of the capacitors C1–C4.

The evolution of the density in vibrated granular materials was investigated in a pioneering
paper by Knight et al [2,3]. The experimental set-up that they used consisted of monodisperse
spherical glass beads in a long thin cylinder mounted vertically on a vibration exciter. The
packing fraction of the beads was measured by means of four capacitors mounted at different
heights along the tube (see figure 1). The shaking intensity �, determined by the maximum
applied acceleration normalized by gravity, was controlled. The system was prepared in a
low-density initial state before being subjected to a sequence of single shakes or ‘taps’. The
time between taps was long enough to allow the system to come to rest, so taps were completely
independent and internal resonances were avoided. It was observed that the density increased
monotonically, tending eventually to a steady value. The number of taps required to reach the
final density was very large, often larger than 105.

The authors found that a good description of the experimental data was obtained with an
inverse-logarithm four-parameter fit of the form

ρ(t) = ρ∞ − �ρ∞
1 + B ln(1 + t/tc)

(1)

where time is measured in numbers of taps and where the parameters ρ∞, �ρ∞, B, and tc
are constants that depend only on the tapping strength �. The above inverse-logarithmic
expression fitted the data better than other more usual laws such as a single exponential, a
combination of two exponentials, a power law, or a stretched exponential. Two features of the
experimental results that are relevant for the later discussion here are:

(i) The slope of the relaxation curve is smaller for smaller vibration intensity �, i.e. the
relaxation is slower for smaller �.

(ii) The final steady density is a monotonically decreasing function of1 �.
1 The inset in figure 5 of [2] could be misleading, since the parameter ρ∞ shows there an increasing behaviour with �.
However, this is due to the fact that the states considered for small values of � do not correspond to the final stable
configuration, but to metastable ones [3].
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A theoretical attempt to formulate a ‘thermodynamic’ description of the steady states reached
by the system in the long-time limit has been carried out by Edwards and co-workers [4–6].
They extended the methods and concepts of usual statistical physics to granular media. The
basic idea is that the volume plays in these systems a role analogous to that played by the
energy in molecular (elastic) systems. Although there has been no experimental verification
of this theory up to now, it has been shown to be consistent with the behaviour of some simple
models for granular compaction [7–9].

In addition to the slow relaxation described above, vibrated granular materials exhibit a
number of properties that are reminiscent of the typical behaviour of conventional structural
glasses. These include effects such as annealing, i.e. slow-‘cooling’ properties, and hysteresis
when the tapping intensity is monotonically increased and decreased [3, 10]. This apparent
glassy nature of granular compaction led Josserand et al [11] to investigate the response of a
vibrated granular system to sudden perturbations of the intensity �. Their work was inspired
by classical experiments in the study of aging in glasses, and the realization that the vibration
intensity plays in vibrated granular media a role analogous to the temperature in molecular
systems. Previously, a similar process had been studied by means of numerical simulations in
a model for compaction [12].

In the simplest compaction experiment of [11], the vibration intensity was instantaneously
changed from a value �1 to another, �2, after tw taps. For �1 > �2 it was observed that on
short timescales the compaction rate increases, while for �2 > �1 the system dilates for short
times. Both results are opposite to the behaviour at constant �, as discussed above. After
several taps, the ‘normal’ behaviour was recovered. This is a direct evidence of the presence
of short-term memory effects in the system, so the density for t > tw is not determined by
its value at t = tw. Other experiments are also reported by the same authors, showing the
same kind of non-Markovian behaviour. In the next section we will investigate whether this
anomalous response can be understood in terms of simple and general arguments.

2. Mesoscopic description of the density evolution

When a granular system is being vibrated, different kinds of event take place in the system.
The existence of a steady density for constant vibration intensity suggests the presence of two
different kinds of elementary process, the ones trying to increase the density and the others
trying to decrease it. Stationarity arises when the two tendencies cancel each other out. Thus,
we will assume that the time evolution of the density ρ in a tapping process can be described
at a mesoscopic level by a balance equation of the form

dρ(t)

dt
= f1(�)µ1(t) − f2(�)µ2(t) (2)

where t is measured in number of taps, and the functions on the rhs obey

f1(�) � 0 f2(�) � 0 (3)

µ1(t) > 0 µ2(t) > 0. (4)

The quantities µ1(t) and µ2(t) are assumed to include all the correlation effects. Note that
we do not assume that µ1 and µ2 can be expressed as functions of ρ(t), so equation (2) is not
closed. Our aim in the following will be to investigate what information can be obtained about
f1, f2, µ1, and µ2 by using very general and plausible physical arguments. First, we notice
that since we are measuring the time in units of complete taps, if there is no tapping there is
no time evolution either. Therefore, it must be the case that

f1(� = 0) = f2(� = 0) = 0. (5)
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Moreover, the number of elementary processes, both those tending to increase and those tending
to decrease the density, are expected to increase with �. This expectation is reinforced by the
analogy of� with the temperature, as mentioned in the previous section. Hence we assume that
f1(�) and f2(�) are both monotonically increasing functions. Let us introduce the function

g(�) ≡ f2(�)

f1(�)
(6)

representing the ratio of the rate associated with the decompaction processes to that of the
compaction ones. As already mentioned, experiments show that the steady-state density
is a decreasing function of �. This suggests that g(�) must be an increasing function
of the vibration intensity, so decompaction events become relatively more relevant. This
assumption can be further justified by analysing the behaviour of the steady-state solutions of
equation (2) [13]. Thus we can rewrite our mesoscopic evolution equation as

d

dt
ρ(t) = f1(�) [µ1(t) − g(�)µ2(t)] . (7)

Here f1(�), g(�), µ1(t), and µ2(t) are all positive quantities. Moreover, the first two are
increasing functions of �, vanishing in the limit � → 0. This fully specifies the general kind
of evolution equations that we will deal with. Let us consider the following experiment. A
system is vibrated with a constant intensity�. At a given time tw, the intensity is instantaneously
changed to � + ��. We want to study the change in the relaxation rate r(t) ≡ dρ(t)/dt . Just
before the change, we get from (7)

rw = f1(�)[µ1(t
−
w ) − g(�)µ2(t

−
w )] (8)

while just after the change, we have

r ′
w = f1(� + ��)[µ1(t

+
w) − g(� + ��)µ2(t

+
w)]. (9)

Then, for �� � 1, we get

�rw

��
≡ r ′

w − rw

��
= λ(tw) (10)

where we have defined the function (r(t) and µ2(t) are computed over the relaxation curve at
constant �)

λ(t) = f ′
1(�)

f1(�)
r(t) − f1(�)g

′(�)µ2(t). (11)

In deriving equation (10) we have assumed that µ1(t) and µ2(t) are continuous at t = tw. This
seems physically plausible since they are functionals of the state of the system. For instance,
in the mesoscopic description they can be expressed as given moments of the underlying
distribution function of the system, which is known to be a continuous function of time. In
the limit tw → ∞, the system has time to reach the stationary density corresponding to the
intensity � before the change, so rw = 0 and λ(tw) < 0, because of the properties of the
functions f1(�) and g(�). In the opposite limit, tw → 0, and assuming that the initial density
is close to its minimum value, one has λ(tw) > 0. To derive this, we have taken into account
that µ2 must vanish in the lowest-density limit, where by definition no processes decreasing
the density are possible. The conclusion of this discussion is that λ(tw) has opposite signs in
the short- and large-tw limits. Then, it follows from equation (10) that when the system has
been vibrated for a short time before the change of vibration intensity, �rw and �� have the
same sign, i.e. the response of the system is what we have described in the previous section
as normal. On the other hand, if the vibration time before the change is large, the response of
the system is anomalous. In this context, the experiments reported in [11] would correspond
to ‘large’ periods of vibration before the abrupt change in the shaking intensity.
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3. A simple model for granular compaction

In this section we are going to describe a one-dimensional model for granular compaction [14]
that is simple enough to allow for detailed calculations, while at the same time capturing many
of the characteristic experimental features. We consider a lattice in which each site i can be
either occupied by a particle or empty (occupied by a hole). A variable mi is assigned to each
site, taking the value mi = 1 if the site is empty, and mi = 0 if there is a particle on it. The time
evolution of the system is defined in the following way. The only possible elementary events
occurring in the system are the adsorption of a particle on an empty site and the desorption of
a particle from the lattice to the bulk. Then the dynamics is formulated by means of a master
equation with a transition rate for the change of mi into 1 − mi given by

Wi(m) = ν

2
(mi−1 + mi+1) [ε + mi(1 − 2ε)] . (12)

Here m ≡ {m1,m2, . . .}, ν is a frequency defining the characteristic timescale, and ε is a
dimensionless parameter taking values in the interval 0 � ε � 1. Thus the transition rate for
the adsorption of a particle at site i is

W +
i (m) = ν

2
(1 − ε)mi(mi−1 + mi+1) (13)

and that for the desorption of a particle

W−
i (m) = ν

2
ε(1 − mi)(mi−1 + mi+1). (14)

It is seen that for ε = 1 no particle can be absorbed, while for ε = 0 desorption processes
are excluded. Moreover, all processes are restricted, in the sense that a site can change its
state only if at least one of its nearest-neighbour sites is empty. A similar kind of facilitated
dynamics has been considered in the formulation of Ising models for glassy relaxation [15]. A
physical picture of the model can be obtained by associating a hole with a region of the granular
system having a low density, and a site occupied by a particle with a high-density region. The
facilitated dynamics tries to translate the idea that fluctuations leading to rearrangements in a
region require a neighbouring region with low packing fraction. Our one-dimensional model
is a very idealized representation of a low-lying horizontal layer in a vibrated granular system,
the parameter ε being related to the intensity of vibration.

In order to model a tapping experiment, the system is initially placed in a purely random
configuration, from which it relaxes with ε = 0 until it eventually gets trapped in a metastable
state, with all the holes surrounded by two particles. This is a low-density configuration that
is taken to correspond to the loosely packed initial conditions used in real experiments. Then,
a pulse is generated by instantaneously increasing ε to a given value for a time period t0.
Afterwards, the system relaxes again with no external excitation, i.e. with ε = 0. In order
to mimic what is done in experiments, the relaxation lasts long enough to allow the system
to reach a metastable configuration, from which no evolution is possible in the absence of
external excitation. This completes a tapping event. The process is then repeated to generate
a series of taps.

A first test of the relevance of the model to the study of compaction in vibrated granular
systems is, of course, whether it leads to the same kind of density evolution at constant vibration
intensity as is experimentally observed. We have verified that this is the case in the limit
ενt0 � 1. The mean density in a homogeneous configuration is given by ρ(t) ≡ 1 − 〈mi(t)〉,
with the angular brackets denoting the ensemble average and i being arbitrary.

An example is given in figure 2, where the relaxation of the density is plotted as a function
of the scaled time τn = νεt0n, n being the number of taps. The numerical data have been
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Figure 2. Time evolution of the density of the model described in the main text when it is subjected
to a tapping process with ε = 0.5. Data obtained with three different values of t0, namely 0.002,
0.001, and 0.02, have been plotted.

obtained from Monte Carlo simulations and different values of ε and t0 have been used. The
fact that all curves collapse indicates that τn is the relevant timescale for the compaction
problem. Also plotted in the same figure is the fit to the phenomenological law (1), with
parameters ρ∞ = 1.10, �ρ∞ = 0.40, B = 0.39, and tc = 3.37/νεt0. It is seen that the
inverse-logarithmic law describes the simulation results very well. Similar behaviour has also
been found in other models for granular compaction [16–18]. Nevertheless, we ought to say
that we have not been able to derive the heuristic relaxation law by analytical methods, in
spite of the tractability of our model. It is possible that it could be just a convenient fitting
expression over a wide time window. A strong indication supporting this idea is that the
steady-state density predicted by the logarithmic law ρ∞ in the limit of an asymptotically large
number of taps is not only in disagreement with the simulations, but is clearly unphysical since
it is larger than one. The same happens with the experimental results, where ρ∞ is sometimes
greater than the random-close-packing density [2]. In fact, it is possible to derive an analytical
expression for the asymptotic density reached by the model with the result

ρ
(s)
0 � 1 − 1

2ενt0 (15)

valid again in the limit ενt0 � 1. This expression has also been checked by Monte Carlo
simulations [14].

4. Effective dynamics for tapping processes

The stochastic model formulated in the previous section, with the transition rates given by
equation (12), can be used to study a variety of compaction processes by specifying the
time dependence of the control parameter ε. In particular, we have already discussed some
applications to tapping processes, based on the application of the general equations following
from the master equation to a specific way of vibrating the system. A different, and more
appealing, approach is to look for an effective master equation following from (12) that
is appropriate for a given experiment. We have developed such a programme for tapping
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Figure 3. The effective dynamics tries to define the transitions between the crosses, which
correspond to the results of successive taps.

processes [7]. The idea is to look for effective transitions rates, Wef(m|m′), connecting the
initial and final states of the system when it is subjected to an ‘elementary event’ (see figure 3).
The latter is defined as the combination of a tap and the following free relaxation to a metastable
configuration. In the limit of ενt0 � 1, three groups of possible transitions are identified:

(a) Elementary diffusive events, conserving the number of particles. They correspond to the
interchange of a hole and a particle:

. . . 100 . . . → . . . 010 . . . . . . 001 . . . → . . . 010 . . . . (16)

The effective transition rate for each of these processes is α/2, where

α = νt0ε

2
(17)

is a positive constant playing a role similar to that played by � in the real experiments.
(b) Transitions increasing the number of particles. There are three of them:

. . . 101 . . . → . . . 010 . . . (18)

with transition rate α/2,

. . . 101 . . . → . . . 001 . . . (19)

with transition rate α/4, and

. . . 101 . . . → . . . 100 . . . (20)

also with transition rate α/4.
(c) Transitions decreasing the number of particles. These are

. . . 00100 . . . → . . . 01010 . . . (21)

with transition rate α2/2 and

. . . 01000 . . . → . . . 01010 . . . (22)

. . . 00010 . . . → . . . 01010 . . . (23)

both with Wef = α2/4.

Only those variables corresponding to sites whose state is changing or conditioning the
transition are represented in the above expressions. The equivalence of this model to the
original one defined by the transition rates (12), in the limit of small α, has been tested by
comparing the Monte Carlo simulation results obtained with both models. In fact, the data
show that, for the density relaxation, the results from the effective model and the original one
differ by less than 2% for α � 0.5. For constant α �= 0, the system evolves from the initial
low-density configuration to a final state characterized by a density

ρs(α) = 1
2 [1 + (1 + 4α)−1/2]. (24)
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Figure 4. Evolution of the density when the system is subjected to a tapping cycle as described in
the text. The diamonds and the crosses represent the approximately reversible cooling and heating
processes, respectively.

A detailed analysis of the properties of the steady state [7] shows that they are consistent with
Edwards’ theory [4–6], with the compactivity being identified asX = −(ln α)−1. Furthermore,
when the system described by the effective transition rates is subjected to processes in which
the tapping intensity is first monotonically increased and then decreased, again monotonically,
its time evolution presents the reversible–irreversible branches observed in experiments [19].
In figure 4 an example of the response of the system to one of these cycles is presented. The
compactivityX of the system is decreased and increased with the same rate, r = 10−5. Starting
from the lowest-density configuration, for large enough vibration intensity (or compactivity)
the density of the system approaches the steady curve. Afterwards, when the compactivity is
decreased and increased, always with the same rate, two (approximately) reversible curves are
obtained. These hysteresis effects are related to the existence of a ‘normal evolution curve’,
fully determined by the schedule of increasing the tapping intensity, and having the strong
property of attracting any other solution of the master equation with the same schedule [19].

5. Memory effects

Now, we will show that the effective dynamics introduced above leads to a model for tapping
processes that belongs to the general class discussed in section 2 and, consequently, also
presents the short-term memory effects observed in vibrated granular materials. We start
by noting that the steady-state density for constant tapping intensity, given by (24), is a
monotonically decreasing function of α, going from ρmax = 1 to ρmin = 0.5. Next, from
the master equation with the transition rates (16)–(23) one obtains

dρ

dt
= αx101(t) − α2

2

[
x00100(t) +

1

2
x01000(t) +

1

2
x00010(t)

]
(25)

where x101 is the concentration of hole–particle–hole clusters, x00100 is the concentration of
two-particle–hole–two-particle clusters, and so on. Comparison of the above equation with (7)
shows that the two equations have the same form, with the choices

f1(α) = g(α) = α (26)
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Figure 5. The response of the system to a sudden change in the vibration intensity from α = 0.15
to α = 0.125. When this change is made at tw = 10 < tc , the response is normal, i.e. the slope
of the relaxation curve decreases. On the other hand, for tw = 50 > tc an anomalous response is
observed.

µ1(t) = x101(t) µ2(t) = 1
2x00100(t) + 1

4 [x01000(t) + x00010(t)] . (27)

Since f1 and g are monotonically increasing functions of α, and µ1 and µ2 are defined positive
quantities, the model meets the conditions required for the validity of the discussion given in
section 2. Therefore, we can write directly from equation (10)

�rw

�α
= λ(tw) (28)

where the function λ(t) determining the nature of the response of the system is

λ(t) = r(t)

α
− αµ2(t). (29)

For instance, for α = 0.15, Monte Carlo simulations show that λ(t) > 0 for t < tc, while
λ(t) < 0 for t > tc, with 19 < tc < 20 [13]. According to the theory presented here,
when the vibration intensity α is modified at a time tw < tc, a normal response in which the
intensity jump and the relaxation rate jump have the same sign is to be expected. On the other
hand, when tw > tc, stimulus and response should have opposite signs, corresponding to an
anomalous response. In figure 5 we have plotted the time evolution of the density of a system
which is being vibrated with α = 0.15 up to t = tw, at which point the intensity is suddenly
decreased to α = 0.125. The only difference between the two curves is in the value of tw; in
one case it is tw = 10 < tc while in the other tw = 50 > tc. In agreement with the theoretical
analysis, the relaxation rate at the jump decreases in the first case and increases in the latter.

It is important to stress the generality of the arguments in section 2. Although we have
restricted ourselves in this work to a particular simple model of compaction, the theoretical
scheme presented here is rather general. For instance, an equation like (7) is also found for the
so-called parking model [18,20]. Furthermore, the one-dimensional Ising model with Glauber
dynamics also belongs to the group [21]. In summary, the memory effects discussed in the
context of compaction in granular materials seem to be quite general effects showing up in
many different systems.
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